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Abstract

In this paper we extend the results presented in (de Ponte, Mizrahi and
Moussa 2007 Phys. Rev. A 76 032101) to treat quantitatively the effects
of reservoirs at finite temperature in a bosonic dissipative network: a chain
of coupled harmonic oscillators whatever its topology, i.e., whichever the
way the oscillators are coupled together, the strength of their couplings and
their natural frequencies. Starting with the case where distinct reservoirs are
considered, each one coupled to a corresponding oscillator, we also analyze
the case where a common reservoir is assigned to the whole network. Master
equations are derived for both situations and both regimes of weak and strong
coupling strengths between the network oscillators. Solutions of these master
equations are presented through the normal ordered characteristic function.
These solutions are shown to be significantly involved when temperature effects
are considered, making difficult the analysis of collective decoherence and
dispersion in dissipative bosonic networks. To circumvent these difficulties,
we turn to the Wigner distribution function which enables us to present a
technique to estimate the decoherence time of network states. Our technique
proceeds by computing separately the effects of dispersion and the attenuation
of the interference terms of the Wigner function. A detailed analysis of the
dispersion mechanism is also presented through the evolution of the Wigner
function. The interesting collective dispersion effects are discussed and applied
to the analysis of decoherence of a class of network states. Finally, the entropy
and the entanglement of a pure bipartite system are discussed.
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1. Introduction

The subject of networks of interacting quantum systems has acquired an important role in
the emerging field of quantum information theory. Since a realistic quantum logic processor
must ultimately be composed of a large number of interacting quantum systems, it becomes
mandatory to understand processes such as perfect state transfer from one system to another
system of the network, and even to compute the fidelity of such a state transfer when the
action of the environment is taken into account. A significant number of results have recently
been derived on the subject of perfect state transfer in optical lattices [1], networks of spin [2]
and harmonic oscillators [3]. Perfect state transfer has also been considered in networks of
arbitrary topology and coupling configuration [4] and even under random fluctuations in the
couplings of a quantum chain [5].

Apart from state transfer, the process of decoherence of a network state has also attracted
attention and interesting properties of collective damping effects, such as the nonadditivity of
decoherence rates have been discussed in different contexts as in superconducting qubits [6],
two-atom systems [7] and chains of dissipative harmonic oscillators [8–12]. Still regarding the
process of collective decoherence, the emergence of decoherence-free subspaces (DFSs) has
also instigated several interesting results when considering the particular case of a composite
system interacting with a common reservoir [13], or the more realistic situation where each
system interacts with its own reservoir [10]. We call attention to the fact that all of [8–10]
envisage such realistic cases of networks where each oscillator interacts with its own reservoir,
and also address the particular case where a common reservoir is considered. Therefore,
beyond the analysis of decoherence due to the inevitable coupling of a single quantum system
with a reservoir, as in [14], in this paper we are concerned with the collective mechanisms of
decoherence and dispersion in a thermal dissipative bosonic network.

To better understand the results in [8–10], which are crucial to introducing the subject of the
present work, we remember that, apart from the distinct reservoirs, the network of N dissipative
harmonic oscillators could present direct and indirect dissipative channels. Through the direct
channels each oscillator loses excitation to its own reservoir, whereas through the indirect
channels it loses excitation to all the other reservoirs but not to its own. When we consider
distinct reservoirs for each network oscillator, the indirect dissipative channels—intrinsically
associated with the nonadditivity of decoherence rates and the emergence of DFSs [10]—are
significant only in the strong coupling regime where Nλmn � ω�, i.e., the number of network
oscillators N multiplied by their coupling strengths {λmn} is about their natural frequencies
{ωm}. Therefore, the strong coupling regime, which brings together the collective damping
effects, depends on the number of network oscillators as much as on their coupling strengths.
For Markovian white noise reservoirs, however, where the spectral densities of the reservoirs
are invariant under translations in frequency space, the indirect channels become null, except
for the case of N = 2 [8].

In the weak coupling regime where Nλmn � ω�, the indirect channels always disappear.
However, these indirect channels, coming from the strong coupling regime, remain in the case
where all network oscillators interact with a common reservoir [10], even assuming a common
Markovian white noise reservoir. This is due to the fact that a common reservoir induces an
additional correlation between the network oscillators, restoring the indirect decay channels.

Recently, a generalization of [8, 9] has been presented through a comprehensive treatment
of networks of dissipative quantum harmonic oscillators, whatever its topology, i.e., whichever
the way the oscillators are coupled together, the strength of their couplings and their natural
frequencies [11]. Focusing on the general more realistic scenario where each oscillator
is coupled to its own reservoir, the case where all the network oscillators are coupled to
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a common reservoir was also addressed. However, after deducing the master equation
for the case where all the reservoirs are at finite temperatures, all further analysis of
the dynamics of the network states was restricted to the case where the reservoirs are at
T = 0 K. Whereas a quantitative analysis of the decoherence and the evolution of the linear
entropy of representative states of the network were given at 0 K, only a brief qualitative
analysis of the equilibrium states of the network was presented at finite temperatures. In the
present manuscript we extend the treatment in [11] given a detailed analysis of the temperature
effects on networks of dissipative quantum harmonic oscillators.

The present extension of [11] that accounts for the temperature effects coming from
thermal reservoirs is not only interesting due to its more realistic approach but also from
the mathematical development here achieved. In fact, we present an alternative approach to
previous results in the literature [15] regarding the obtainment of the solution of the master
equation and the estimation of decoherence times through the Wigner distribution function.
As a matter of fact, since the solutions of our master equations (for distinct reservoirs or a
common one, under the weak and strong coupling regimes) appear to be significantly involved,
we turn to the Wigner distribution function to analyze collective decoherence and dispersion in
our dissipative networks. Being easier to handle mathematically, the Wigner function enabled
us to present a technique to estimate the decoherence time of network states. We observe
that the time-dependent dispersion mechanism, to be defined below, follows directly from the
time-independent diffusion coefficients taking place in the master equations associated with
Markovian reservoirs. Evidently, when the diffusion coefficients are null, for reservoirs at
T = 0 K, the time-dependent dispersion process disappears, as in [16].

To circumvent noise effects, many of the nowadays experiments demonstrating quantum
logic operations through atom–field interactions occur in cryogenic environments where, in
general, temperature effects are negligible. In cavity quantum electrodynamics, the setup is
cooled to around 0.5 K by a 3He–4He refrigerator to avoid blackbody radiation in the high-Q
superconducting cavity. Under such a specific condition, the temperature effects on the
decoherence process are almost negligible. However, when the setup is scaled from one single
cavity to a network of N high-Q cavities, major questions arise due to temperature effects.
First of all, would the DFSs survive despite the temperature effects? Apart from the special
class of states composing the DFSs, how the temperature affects other states of the network, as
for example initial entangled states? Evidently, these questions present no obvious answers,
even under the assumption that all network cavities are cooled at low temperatures. In this
regard, we expect the collective damping effects coming from the indirect dissipative channels
to play a major role for the answers to the above questions. It is important to emphasize that
some systems undergo a significant degree of decoherence even for cryogenic temperatures,
as for example a particle in a Penning trap with harmonic confinement, where the typical
frequencies ω do not obey the relation h̄ω� kBT , with kB being the Boltzmann constant [17].
In this regard we must underline the relevance of the present analysis for recently proposed
schemes for quantum computation based on an array of Penning traps [18].

Apart from providing the mathematical treatment of the temperature effects on a network
of N dissipative harmonic oscillators, in the present manuscript we also analyze the role played
by temperature on the evolution of particular states of the network other than those composing
DFSs. We reserve the analyses of the emergence of DFSs under temperature effects to a
specific work [19] where the mechanism of construction of such privileged states is also
discussed along with decoherence.

This paper is organized as follows: in section 2 we revisit our model of a bosonic
dissipative network [11] and present the derivation of the master equation governing the
dynamics of the associated density operator. In section 3 we present the solution of the
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Figure 1. Sketch of a dissipative symmetric network of N oscillators, where each one interacts
with each other, apart from its own reservoir.

normal ordered characteristic equation obtained from the master equation for the density
operator of the network. In section 4 we analyze the evolution of two general classes of
initial states of the network, given by mixtures of coherent and number states, through the
normal ordered characteristic equation, the Glauber–Sudarshan P-function, and the Wigner
distribution. A detailed analysis of the dispersion processes is presented in section 5 and the
collective decoherence rates of a family of states of the network are analyzed in section 6. In
section 7 we discuss the entropy and the entanglement degree of a pure bipartite system and,
finally, in section 8 we present our concluding remarks.

2. The master equation of a bosonic dissipative network

We present here a brief review of the steps for the derivation of the master equation of a bosonic
network, as developed in [11]. We start from the general case of a network of N interacting
oscillators, where each one interacts with each other, from which all other topologies can be
recovered. As depicted in figure 1, we also consider the case where each oscillator interacts
with its own reservoir due to this being a more realistic approach for most of the physical
systems. However, as pointed in [10], despite the realistic scenario of the case of distinct
reservoirs, the case of a common reservoir is more general from the technical point of view.
In fact, as discussed at the end of this section, the master equation for the case of distinct
reservoirs can be deduced from the case of a common reservoir.

We start by considering a general Hamiltonian for a bosonic network,H = HS +HR +HI ,
composed by a set of N coupled oscillators

HS = h̄
N∑
m=1

⎡
⎣ωma†mam +

1

2

N∑
n( �=m)=1

λmn
(
a†man + ama

†
n

)⎤⎦ , (1)

N distinct reservoirs, modeled by a set of k = 1, . . . ,∞ modes,

HR = h̄
N∑
m=1

∑
k

ωmkb
†
mkbmk, (2)
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and the coupling between the network oscillators and their respective reservoirs

HI = h̄
N∑
m=1

∑
k

Vmk
(
b
†
mkam + bmka

†
m

)
, (3)

where b†mk (bmk) is the creation (annihilation) operator for the kth bath mode ωmk coupled
to the mth network oscillator ωm whose creation (annihilation) operator reads a†m (am). The
coupling strengths between the oscillators are given by the set {λmn}, while those between the
oscillators and their reservoirs by {Vmk}. We assume, from here on, that �,m, n, �′,m′ and n′

run from 1 to N.
Before addressing the dissipative process through Hamiltonian (3), we focus first on

Hamiltonian HS to show how to derive different topologies of a nondissipative network of
coupled harmonic oscillators. Rewriting HS in a matrix form

HS = h̄ (a†1 · · · a
†
N

)⎛⎜⎝
H11 · · · H1N

...
. . .

...

HN1 · · · HNN

⎞
⎟⎠

⎛
⎜⎝
a1

...

aN

⎞
⎟⎠ , (4)

we identify the elements of the matrix H = H† as

Hmn =
{
ωm for m = n

λmn for m �= n
, (5)

whose values characterize whatever the network topology, i.e., whichever the way the
oscillators are coupled together, the set of coupling strengths {λmn}, and their natural
frequencies {ωm}.

To obtain the master equation of the network we first diagonalize the Hamiltonian H
(within the physical regime where the normal modes are assumed to be positive) through the
canonical transformation

Am =
∑
n

Cmnan, (6)

where the coefficients of the mth line of matrix C define the eigenvectors associated with the
eigenvalues �m of matrix H. With C being an orthogonal matrix, its transposed Cᵀ turns
out to be exactly its inverse C−1, resulting in the commutation relations

[
Am,A

†
n

] = δmn and
[Am,An] = 0, which enable the Hamiltonian H to be rewritten as a sum H = H0 + V , where

H0 = h̄
∑
m

�mA
†
mAm + h̄

∑
m

∑
k

ωmkb
†
mkbmk , (7a)

V = h̄
∑
m,n

∑
k

C−1
mnVmk

(
b
†
mkAn + bmkA

†
n

)
. (7b)

With the diagonalized Hamiltonian H0 we are ready to introduce the interaction picture, defined
by the transformation U0(t) = exp (−iH0t/h̄), where

V (t) = h̄
∑
m,n

[
Omn(t)A†

n + O†
mn(t)An

]
, (8)

and Omn(t) = C−1
mn

∑
k Vmk exp [−i (ωmk −�n) t] bmk . Next, we assume that the interactions

between the resonators and the reservoirs are weak enough to allow a second-order perturbation
approximation. We also assume a Markovian reservoir such that the density operator of the
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global system can be factorized as ρS(t)⊗ρR(0). Under these assumptions the reduced density
operator of the network of N dissipative coupled resonators satisfy the differential equation

dρS(t)

dt
= − 1

h̄2

∫ t

0
dτ TrR [V (t), [V (τ), ρS(t)⊗ ρR(0)]] . (9)

Since for a thermal reservoir 〈bmkbnk′ 〉 =
〈
b
†
mkb

†
nk′

〉
= 0, we have to solve the integrals

appearing in equation (9), related to correlation functions of the form∫ t

0
dτ

〈
Omn(t)O†

m′�(τ )
〉 = C−1

mnC�m′

∫ t

0
dτ

∑
k,k′
VmkVm′k′

〈
bmkb

†
m′k′

〉
× exp{−i[(ωmk −�n)t − (ωm′k′ −��)τ ]}. (10)

Considering that the reservoir frequencies are very closely spaced to allow a continuum
summation, we obtain∫ t

0
dτ

〈
Omn(t)O†

m′�(τ )
〉 = Nδmm′C−1

mnC�m
γm(��) + n̄m(��)γ̃m(��)

2
ei(��−�n)t , (11)

where we have defined the average excitation of the reservoir associated with the mth oscillator
as n̄m(ν) through the relation

〈
b
†
m(ν)bn(ν

′)
〉 = 2πδmnn̄m(ν)δ(ν − ν ′), apart from the damping

rates

γm(ω) =
∫ t

0
dτ

∫ ∞

0

dν

Nπ
[Vm(ν)σm(ν)]

2 e−i(ν−ω)(τ−t), (12a)

γ̃m(ω) =
∫ t

0
dτ

∫ ∞

0

dν

Nπ
[Vm(ν)σm(ν)]

2 n̄m(ν)

n̄m(ω)
e−i(ν−ω)(τ−t), (12b)

with σm(ν) being the density of states of the mth reservoir. In the context of Markov
approximation, where Vm(�n), σm(�n) and n̄m(�n) are slowly varying functions around
the normal modes �n we can simplify the expressions (12) to their usual forms

γm(ω) = γ̃m(ω) = 1

N
[Vm(ω)σm(ω)]

2 . (13)

Back to the Schrödinger picture and to the original field operators am, we finally obtain
from the steps outlined above, the master equation

dρS(t)

dt
= i

h̄
[ρS(t),HS] +

∑
m,n

[
mn + ϒmn

2
LmnρS(t) +

ϒmn

2
LmnρS(t)

]
, (14)

where we have defined the damping and the diffusion matrix elements mn and ϒmn in the
forms

mn = N
∑
�

C�nγm(��)C
−1
m� , (15a)

ϒmn = N
∑
�

C�nγ̃m(��)n̄m(��)C
−1
m� , (15b)

whereas the Liouville operators accounting for the direct (m = n) and indirect (m �= n)
dissipative channels are given by

LmnρS(t) ≡ [
anρS(t), a

†
m

]
+
[
am, ρS(t)a

†
n

]
, (16a)

LmnρS(t) ≡ [
a†nρS(t), am

]
+
[
a†m, ρS(t)an

]
. (16b)
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We note that, as expected for Markovian reservoirs [20], the diffusion matrix elements are
time independent, differing from those arising from non-Markovian reservoirs [21].

As mentioned in section 1 and discussed in [11], the oscillators lose excitation to their
own reservoirs through the direct dissipative channels, whereas through the indirect channels
they lose excitation to all the other reservoirs but not to their own. Although in [11] we have
obtained the master equation for the general case of reservoirs at finite temperatures, all further
analysis was carried out for reservoirs at 0 K where the diffusion matrix elementsϒmn are null.
Next, considering the case of reservoirs at finite temperatures, we must discuss the master
equation (14) under the weak and strong coupling regimes between the network oscillators.
Here we must emphasize that while we assume the interactions between the resonators and
the reservoirs to be weak, those between the networks oscillators can also be strong, in the
sense to be defined below.

2.1. Weak interoscillator coupling regime

We first remember that the weak coupling regime for a network of N coupled oscillators
is defined by the relation Nλmn � ω�. (However, if a specific coupling λmn between two
oscillators, m and n, fails to satisfy the relation Nλmn � ω�, the network dynamics is
necessarily described by the strong coupling regime, with some normal-mode frequencies
far beyond their natural values.) In the weak coupling regime, the interaction between the
network oscillators, described by h̄

∑
m,�=n λmn

(
a
†
man + ama

†
n

)/
2, could be directly introduced

into the von Neumann term of the master equation to a good approximation, circumventing
the necessity to diagonalize the Hamiltonian H through a canonical transformation Am =∑
n Cmnan. This is equivalent to approximating the matrix C by a identity matrix I, implying

that

mn = Nγm(ωm)δmn, (17a)

ϒmn = Nγ̃m(ωm)n̄m(ωm)δmn, (17b)

where, evidently, we have also approximated the normal modes by their original natural
frequencies. Under the above considerations, the master equation (14) becomes

dρS(t)

dt
= i

h̄
[ρS(t),HS] +N

∑
m

[
γm(ωm) + γ̃m(ωm)n̄m(ωm)

2
LmmρS(t)

+
γ̃m(ωm)n̄m(ωm)

2
LmmρS(t)

]
, (18)

where, essentially, the indirect dissipative channels disappear, establishing the additivity of
the decoherence rates.

2.2. Strong interoscillator coupling regime

The strong coupling regime means that Nλmn ≈ ω�, i.e., at least one of the couplings {λmn}
between two network oscillators must be of the order of any natural frequency {ωm}. In
this case, the indirect dissipative channels become effective, inducing collective damping and
dispersion effects that we must investigate. As pondered in section 1, would the collective
effects of nonadditivity of the decay rates and the emergence of DFSs still survive despite the
temperature effects?

It must be mentioned that Markovian white noise reservoirs wash out the collective
damping effects introduced by the strong coupling regime since the spectral densities are
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invariant under translations in frequency space, i.e., γm(�n) = γm, rendering the same matrix
elements mn as in equation (17a). However, Markovian white noise reservoirs do not
wash out the collective diffusion effects. In fact, only under the additional assumption that
n̄m(�n) ≈ n̄m for whatever normal mode �n, we recover equation (17b) for the diffusion
matrix Υ, erasing the collective effects completely. Next we discuss the case where the whole
network is under the action of a common reservoir.

2.3. A common reservoir

When all the network oscillators are coupled to a single reservoir, the master equation, derived
in [10], is similar to that in equation (14), replacing the damping and the diffusion matrix
elements by

mn = N
∑
�,n′
C�nγmn′ (��) C

−1
n′� , (19a)

ϒmn = N
∑
�,n′
C�nγ̃mn′ (��)C

−1
n′� , (19b)

where the damping rates γmn(ω) and γ̃mn(ω) for the case of a single common reservoir are
given by [10]

γmn(ω) =
∫ t

0
dτ

∫ ∞

0

dν

Nπ
Vm(ν)Vn(ν)σ

2(ν) e−i(ν−ω)τ , (20a)

γ̃mn(ω) =
∫ t

0
dτ

∫ ∞

0

dν

Nπ
Vm(ν)Vn(ν)σ

2(ν)
n̄(ν)

n̄(ω)
e−i(ν−ω)τ . (20b)

As mentioned above and discussed in [10], the master equation for the case of distinct reservoirs
can be deduced from the case of a single common reservoir. The above deduction of the master
equation (14), where we started from the case of distinct reservoirs, was entirely due to its
broad application in many physical systems. To demonstrate how to derive the case of a
distinct reservoir from that of a common one, we remember that Vm(ν) gives the distribution
function of the reservoir modes coupled to the mth oscillator. Therefore, in the absence of
overlap between the distribution functions, i.e.,

∫
dνVm(ν)Vn(ν) = 0 for m �= n, equations

(20) reduce to those in equations (12). In this case, the occurrence of the indirect-decay
channels follows entirely from the strong coupling between the oscillators, as discussed in
the subsections presented above. When there is a significant overlap between the distribution
functions, i.e.,

∫
dνVm(ν)Vn(ν) �= 0 for at least onem �= n, we get the indirect-decay channels

even when the network oscillators do not interact at all. The strength of the damping and the
diffusion matrix elements being defined by the amount of the overlap, i.e., when the overlap
between the distributions Vm(ν) and Vn(ν) is maximum, the strengths mn andϒmn equal mm
and ϒmm.

3. Normal ordered characteristic function

To analyze the dynamics of the network states for the case where the reservoirs are at finite
temperatures, we consider the evolution of the (normal ordered) characteristic function, derived
from the master equation (14) (suitable for all cases discussed in the previous section) as

d

dt
χ({ηm}, t) = −

∑
m,n

[
ηm
ϒmn

2
η∗
n + ηm

(
HD
mn

)∗ ∂

∂ηn
+ c.c.

]
χ({ηm}, t), (21)

8



J. Phys. A: Math. Theor. 42 (2009) 365304 M A de Ponte et al

where we defined the matrix elements

HD
mn = mn/2 + iHmn. (22)

As noted in [11], the matrix HD is an extension of the free evolution H in equation (5), which
takes into account the dissipative mechanisms of the network.

Starting with the assumption that equation (21) admits a solution of the form χ({ηm}, t) =
ϕ({ηm})φ({ηm}, t), we obtain two differential equations, one accounting for the dynamic
process, given by

d

dt
φ({ηm}, t) = −

∑
m,n

[
ηm

(
HD
mn

)∗ ∂

∂ηn
+ c.c.

]
φ({ηm}, t), (23)

and the other accounting for the stationary solution of the characteristic function, given by∑
m,n

[
ηm
ϒmn

2
η∗
n + ηm

(
HD
mn

)∗ ∂

∂ηn
+ c.c.

]
ϕ({ηm}) = 0. (24)

If we perform the substitution HD → −(HD)† into the first differential equation (23), it
turns out to be exactly that appearing in [11] for the derivation of the solution of the Glauber–
Sudarshan P-function. Therefore, following the steps outlined in [11], the solution of equation
(23) can be written as

ηm(t) =
∑
�,n

ηn(0)D
∗
n� exp(−�∗

�t)
(
D−1
�m

)∗
, (25)

where we employed the diagonal form of HD following from the transformation D−1 • HD •
D = Ω. Note that writing solution (25) in a matrix form, it becomes

η(t) = η(0) • D∗ • exp(−Ω∗t) • (D−1)∗

= η(0) • exp[−(D •� • D−1)∗t]
= η(0) • exp[−(HD)∗t] (26)

such that
dη(t)

dt
= −η(t) • (HD)∗, (27)

or, equivalently,

dηn(t)

dt
= −

∑
m

ηm(t)
(
HD
mn

)∗
, (28)

representing a system of coupled differential equations which follows from equation (23)
under the assumption that φ({ηm}, t) = φ({ηm(t)}), with ηm = ηm(0) [11].

The second differential equation (24) can be solved assuming a general Gaussian form

ϕ({ηm}) = exp

(
−1

2

∑
m,n

ηm�mnη
∗
n

)
, (29)

where the elements of matrix Π are the coefficients to be determined. Substituting (29) into
equation (24) and changing conveniently the labels m and n of the involved matrices, we verify
that the differential equation (24) reduces to a matrix equation of the form

(HD)∗ • Π +� • (HD)� = Υ + Υ�, (30)

which is explicitly written as∑
�

(
HD
m�

)∗
��n +

∑
�

�m�HD
n� = ϒmn +ϒnm. (31)

9
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with the superscript � in equation (30) standing for transposed. It is worth noting that for
identical reservoirs, where γm = γ and so Γ = Γ�, we obtain a symmetric dissipative matrix
HD , i.e., HD = (

HD
)�

, making equation (30) the well-known Lyapunov equation. The
solution of equation (30), namely the determination of Π, can be obtained by converting the
matrix equation into a system of N2 algebraic equations, i.e., into a new matrix equation of the
simplified form A • X = B, with the elements of matrix X being the N2 unknown variables.
To this end, it is useful to define the column vector

vec(�) ≡ (�11 �21 · · · �N1 �12 · · · �N2 · · · �1N · · · �NN)
�, (32)

where the first N elements of vec (�) correspond to the first column of matrix Π, whereas the
next N elements correspond to the second column of Π and so on. As so, the matrix equation
(30) can be rewritten into the form [22]

[I ⊗ (HD)∗ + HD ⊗ I] • vec (�) = vec(Υ + Υ�), (33)

where I is an N × N identity matrix. From the mathematical properties presented in
appendix A for the matrix

[
I ⊗ (

HD
)∗

+ HD ⊗ I
]
, we verify that the elements of matrix

Π can be written as

���′ =
∑

m,n,m′,n′

ϒm′n′ +ϒn′m′

�m +�∗
n

D�′mD
−1
mm′

(
D�nD

−1
nn′

)∗
, (34)

finally leading to the solution of equation (24) through equation (29). In fact, substituting
the expression (34) into the left-hand side of equation (31), and using the relation
D−1 • HD • D = � ⇒ HD • D = D •�, we obtain∑
�

[(
HD
m�

)∗
��n +�m�HD

n�

] =
∑
m′,n′

(ϒm′n′ + ϒn′m′) δmn′δnm′ = ϒmn +ϒnm, (35)

which is exactly the right-hand side of equation (31).
We thus verify that the solution of the characteristic equation is of the form

χ({ηm}, t) = ϕ({ηm}) [φ({ηm}, t = 0)|{ηm}⇒{ηm(t)} . (36)

Since for t = 0 we get χ({ηm}, 0) = ϕ({ηm})φ({ηm}, 0), such that φ({ηm}, 0) =
χ({ηm}, 0)/ϕ({ηm}), we end up with the solution of the characteristic function

χ({ηm}, t) = ϕ({ηm})
ϕ({ηm(t)}) [χ({ηm}, t = 0)|{ηm}⇒{ηm(t)} , (37)

given in terms of its initial state. An interesting point to be noted is that the dynamics of the
problem, given by ηm(t), takes into account only the dissipative rates mn together with the
free evolution Hamiltonian H in equation (5), leaving aside the diffusive process associated
with ϒmn. Such a diffusive process, appearing in the ratio ϕ({ηm})/ϕ({ηm(t)}) is, however,
modified by the dissipative mechanisms.

4. Dynamics of the network states: characteristic function, Glauber–Sudarshan

P-function, Wigner distribution and density operator

Starting from two general classes of initial network states, given by mixed superpositions
of coherent and number states, we next analyze the evolution of such states through the
characteristic function, the Glauber–Sudarshan P-function and the Wigner distribution. We
also compute the network density operator for the case of mixed superposition of Fock states.

10
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4.1. A mixed superposition of coherent states

Considering that the initial network state comprehends a mixture of superpositions of coherent

states such as |�(0)〉j =
∫

drj�(rj )|{βm(rj )}〉, the initial density operator becomes

ρS(0) =
∑
j

pj

∫
drj�(rj )

∫
dsj�

∗(sj )|{βm(rj )}〉〈{βm(sj )}|, (38)

wherepj is the probability associated with the state |�(0)〉j . The parameters rj (sj ) represent a
set of variables defining the probability density function�(rj ), and |{βm(rj )}〉 = ⊗

m |βm(rj )〉
stands for a product of coherent states, where|βm(rj )〉 represents the state associated with the
mth network oscillator. In the particular case where �(rj ) = ∑

k �kδ
(
rj − r(k)j

)
, the pure

state |�(0)〉j becomes the discrete superposition

|�(0)〉j =
∑
k

�k
∣∣{βkm}〉j , (39)

where we have defined
∣∣{βm (

r(k)j
)}〉 ≡ ∣∣{βkm}〉j . Through the definition of the time-dependent

vector elements Km(rj ; t) = ∑
n �mn(t)βn(rj ) and matrix elements

�mn(t) =
∑
�

Dm� exp (−��t)D−1
�n , (40a)

Jmn(t) = �mn −
∑
m′,n′

�m′n′�∗
mm′(t)�nn′(t), (40b)

we verify, after a rather lengthy calculation, that the evolution of the initial network state (38)
can be described either through the characteristic function

χ({ηm}, t) =
∑
j

pj

∫
dsj�(sj )

∫
dr�∗(rj )〈{βm(rj )}|{βm(sj )}〉

× exp

{∑
m

[ηmK
∗
m(rj ; t)− η∗

mKm(sj ; t)] − 1

2

∑
m,n

ηmJmn(t)η
∗
n

}
, (41)

either by the Glauber–Sudarshan P-function

P({ξm}, t) = (2/π)N

det J

∑
j

pj

∫
dsj�(sj )

∫
drj�

∗(rj )〈{βm(rj )}|{βm(sj )}〉

× exp

{
−2

∑
m,n

J−1
mn (t)[ξm −Km(sj ; t)][ξn −Kn(rj ; t)]∗

}
, (42)

or even by the Wigner distribution function

W({ξm}, t) = (2/π)N

det J̃

∑
j

pj

∫
dsj�(sj )

∫
drj�

∗(rj )〈{βm(rj )}|{βm(sj )}〉

× exp

{
−2

∑
m,n

J̃−1
mn(t)[ξm −Km(sj ; t)][ξn −Kn(rj ; t)]∗

}
. (43)

Note that the difference between the Glauber–Sudarshan P-function and the Wigner
distribution comes from the time-dependent function associated with the width of the their
Gaussian function. Consequently, the Wigner function can be obtained from the Glauber–
Sudarshan P-function through the substitution J → J̃ = J+I. Whereas the Glauber–Sudarshan

11
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P-function diverges when there is no diffusion process such that J = 0 (with all the reservoirs at
0 K), the width of the Wigner function presents an additional term I inhibiting any singularity.

For the case of 0 K reservoirs [11], the density operator of the network, to be used below,
is given by

ρS(t) =
∑
j

pj

∫
dsj�(sj )

∫
drj�

∗(rj )
〈{βm(rj )}|{βm(sj )}〉

〈{Km(rj ; t)}|{Km(sj ; t)}〉 |{Km(sj ; t)}〉〈{Km(rj ; t)}|.

(44)

4.2. A mixed superposition of Fock states

We now assume the initial network state to be a mixture of superposition of Fock states
|�(0)〉j = ∑

x1,...,xN

C
(j)
x1,...,xN |x1, . . . , xN 〉, where the parameter xm indicates the number of

photons in the mth oscillator while the coefficientC(j)x1,...,xN represents the probability amplitude
associated with each state |x1, . . . , xN 〉 ≡ |{xm}〉 composing the whole superposition. The
initial density operator is thus given by

ρS(0) =
∑
j

pj
∑
{xm}

∑
{ym}

(
C
(j)

{ym}
)∗
C
(j)

{xm} |{xm}〉 〈{ym}| , (45)

where pj is the probability associated with the state |�(0)〉j . Since the Fock state |xm〉, of the
mth oscillator, can be expanded as a superposition of coherent states of the form

|xm〉 = Nm

∫ 2π

0
dθm e−ixmθm |βm eiθm〉, (46)

it is easy to note that the initial state (45) can be obtained by equation (38), identifying

�(rj ) → �
(
θj
) =

∑
{xm}
C
(j)

{xm}
∏
m

Nm e−ixmθm , (47a)

∫
drj →

∫ 2π

0
dθm, (47b)

βm(rj ) → βm eiθm , (47c)

such that we can use the results of the previous subsection to obtain the characteristic function,
the Glauber–Sudarshan P-function and Wigner distribution for a mixed superposition of pure
Fock states. Alternatively, such functions may be directly computed from the initial state
(45). Their expressions are presented in appendix B, where the density operator for a mixed
superposition of pure Fock states is also presented.

5. Time-evolved dispersion coefficients

To analyze the time-dependent dispersion mechanism, due to the constant diffusion coefficients
associated with the finite temperature of the reservoirs, we start by computing the Wigner
distribution associated with the normal-mode oscillators. As depicted in figure 2, these
oscillators, described by the Hamiltonian H = H0 + V (equations (7a) and (7b)), do not
interact with each other, but they do interact with all the reservoirs. We, thus, rewrite the
Wigner distribution (43) in a new coordinate frame {ξ̃m}, obtained through the diagonalization
of matrix J̃(t). This new framework follows from the rotation

ξ̃ = ξ • U(t); ξ̃
∗ = U

†
(t) • ξ∗, (48)

12
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Figure 2. Sketch of a dissipative symmetric network of N noninteracting normal-mode oscillators,
each one interacting with all the reservoirs.

where the unitary operation U(t) satisfies U†(t)•J̃(t)•U(t) = D(t). From this matrix relation,
we obtain the evolved dispersion coefficients

Dm(t) =
∑
n,n′
U †
mn(t)J̃ nn′(t)Un′m(t) (49)

as the elements of the diagonal matrix D(t). In this framework, the rotated Wigner distribution,
written as

W({ξ̃m}, t) =
∑
j

pj

∫
dsj

∫
drjW({ξ̃m}; rj , sj , t), (50)

is composed by diagonal (rj = sj ) and off-diagonal (rj �= sj ) elements defined by

W({ξ̃m}; rj , sj , t) = (2/π)N

det J̃
�∗(rj )�(sj )〈{βm(rj )}|{βm(sj )}〉

× exp

{
−
∑
m

2

Dm(t)
[ξ̃m − K̃m(sj ; t)][ξ̃m − K̃m(rj ; t)]∗

}
, (51)

where K̃(rj ; t) = K(rj ; t) • U(t) and K̃∗(rj ; t) = U†(t) • K∗(rj ; t). The vector K̃(rj ; t) gives
the excitation intensity of the mth normal-mode oscillator through |K̃m(rj ; t)|2. We stress
that the larger or smaller values of Dm(t) depend on the network topology (contained within
the matrix elements Umn), apart from the regime of coupling strengths between the oscillators
(contained within the matrix elements J̃ mn(t)). As a particular example of this dependence,
we consider a degenerate symmetric network, i.e., a degenerate network of N oscillators, all
of them interacting with each other, where {ωm} = ω, {λmn} = λ, {γm} = γ, {γ̃m} = γ̃ and
{n̄m} = n̄. In this case, in the strong coupling regime, we obtain the expression

J̃ mn(t) = δmn +
2n̄

N
(1 − e−Nγ t ), (52)

13
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and the dispersion coefficients

Dm(t) =
{
J̃ mm(t)− J̃ mn(t) = 1 for m �= N ,
J̃ mm(t) + (N − 1) J̃ mn(t) = 1 + 2n̄(1 − e−Nγ t ) for m = N ,

(53)

showing that J̃ mn(t) �= 0 can reduce or enhance the strength of the dispersion coefficients
Dm(t) associated with the normal-mode oscillators.

It must be observed that, although we are here addressing the normal-mode oscillators
(depicted in figure 2), which do not interact with each other, the (weak or strong) interoscillator
coupling regime does affect the strengths of the interactions between these normal modes with
all the reservoirs.

5.1. Directional and mean dispersion times

From the above time-dependent dispersion coefficients (53) we define the directional
dispersion time

1

τ
(m)
diff

= d

dt
Dm(t)

∣∣∣∣
t=0

, (54)

displaying a tendency to a significant spread of the peak—common to all elements (the diagonal
and off-diagonal) of the Wigner function—associated with the mth normal-mode oscillator.
Since each normal-mode oscillator defines a direction in the coordinate frame {ξ̃m}, we are
naturally led to define the mean dispersion time, associated with all the dimensions of the
space, as the average value

1

τdiff
= 1

N

∑
m

1

τ
(m)
diff

= 1

N

d

dt
Tr D(t)

∣∣∣∣
t=0

. (55)

The average dispersion time becomes useful to compute the decoherence time of any network
state when complemented with the estimated time for a significant decay of the peaks associated
with the interference terms of the Wigner function (rj �= sj ), to be defined below as τint.

As an illustrative example of the above theory, below we analyze the dispersion coefficients
Dm(t) for the weak and strong coupling regimes considering the case of a degenerate symmetric
network.

5.1.1. The weak coupling regime. In the weak coupling regime, the matrix J̃(t), already in a
diagonal form, is defined by the elements J̃ mn(t) = [1 + 2n̄(1 − e−γ t )]δmn, such that U = 1.
In this regime, all the dispersion coefficients are equal to

Dm(t) = D(t) = 1 + 2n̄(1 − e−γ t ). (56)

The average dispersion time becomes

τdiff = 1

2n̄γ
, (57)

showing, as expected, that the larger the temperature, the smaller the time required for a
significant dispersion rate. In this case, the coefficients Dm(t) are mode independent and
assume a common value, such that the spreads of the peaks associated with the diagonal terms
of the Wigner function occur homogeneously in all directions.

14
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5.1.2. The strong coupling regime. In the strong coupling regime, the elements of matrix J̃(t)

are given by equation (52) and the dispersion coefficients by equation (53), showing that only
the Nth normal-mode oscillator undergoes the dispersion process. For all the normal-mode
oscillators but the Nth, the dispersion coefficientsDm(t), are counterbalanced by the dispersion
rates J̃ mm(t) and J̃ mn(t) coming from the direct- and indirect-decay channels, respectively.
The dispersion coefficients in this regime lead to the same mean dispersion time as that in
equation (57), showing that the average dispersion effect comes entirely from the temperatures
of the reservoirs. As to be demonstrated in the next section, this interesting result is not limited
to the degenerate symmetric topology.

5.2. Dispersion and topology

Starting from equation (55) and noting that Tr D(t) = Tr J̃(t) (J̃(t) = J(t) + I), with the
elements of matrix J(t) given by equation (40b), we obtain the general expression

τ−1
diff = 2

N
Tr Υ, (58)

applicable to whatever the network topology and the strength coupling regime between the
oscillators, where

TrΥ = N
∑
m,n

γ̃m(�n)n̄m(�n)CnmC
−1
mn . (59)

We note that the information regarding the topology of the network is contained only in the
product C−1

mnCnm which acts as a normalized distribution function (
∑
m CnmC

−1
mn = 1) when

computing the average value of the dispersion rate given by equation (58).
We identify two general situations where, as in the case of a degenerate symmetric

network, the dispersion mechanism becomes independent of the topology of the network. The
first situation occurs (i) when identical reservoirs are assumed, such that γ̃m(�n)n̄m(�n) =
γ̃ (�n)n̄(�n) and, consequently, Tr Υ = N

∑
n γ̃ (�n)n̄(�n), making the mean dispersion

τ−1
diff = 2

∑
m

γ̃ (�m)n̄(�m), (60)

independent of the network topology. The second situation (ii) arises from the assumptions
of Markovian white noise reservoirs and the low-temperature regime, where the normal-mode
frequencies satisfy the relation h̄�m � kBT , with kB being the Boltzmann constant. In
this case we obtain γ̃m(�n)n̄m(�n) ≈ γ̃mn̄m, such that Tr Υ = N

∑
m γ̃mn̄m, with n̄m being

computed around the average value of the normal-mode frequencies. The mean dispersion
time, independent of the network topology, becomes

τ−1
diff = 2

∑
m

γ̃mn̄m. (61)

Both situations (i) and (ii) were considered in order to demonstrate that the mean
dispersion time for both, weak and strong coupling regimes, is the same when considering
a degenerate symmetric network. For any other situation, apart from (i) and (ii), the
average dispersion rate becomes dependent on the network topology, apart from the reservoirs
temperatures.

6. Collective decoherence rates

We start this section by noticing that, although we have derived the solution of the master
equation when temperature effects are present (see appendix B), it is hard to analyze
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decoherence using such an intricate solution. To circumvent this difficulty, it becomes
appropriate to use the Wigner distribution function of the system, instead of the density
operator, to estimate the decoherence time of a family of superposition states which are
particular cases of the general state given by equation (38). This family of states is given by

|ψ1,...,N (0)〉 = N±

(∣∣∣∣α, . . . , α︸ ︷︷ ︸
R

,−α, . . . ,−α︸ ︷︷ ︸
S

, β, . . . , β︸ ︷︷ ︸
N−R−S

〉

±
∣∣∣∣−α, . . . ,−α︸ ︷︷ ︸

R

, α, . . . , α︸ ︷︷ ︸
S

, β, . . . , β︸ ︷︷ ︸
N−R−S

〉)
, (62)

where R (S) indicates the number of oscillators in the coherent state α (−α) in the first term of
the superposition and −α (α) in the second term of the superposition. The remainingN−R−S
oscillators are in the coherent state β. We again stress that we consider a degenerate symmetric
network where all the oscillators are indistinguishable. Therefore, by swapping the states of
any two oscillators m and n, we obtain a state which is completely equivalent to equation (62).
We also note that when R = 1 and S = 0, we obtain from (62) the superposition

|ψ̃1,...,N (0)〉 = N± (|α〉 ± |−α〉)1 ⊗ |{β�}〉 , (63)

where a ‘Schrödinger cat’-like state is prepared in oscillator 1 while all the remaining oscillators
are prepared in the coherent states β.

We start our calculation noting that for a pure two-level state |�〉 = a |+〉 + b |−〉,
whose density matrix is given by ρ = a∗a |+〉 〈+| + b∗b |−〉 〈−| + a∗b |−〉 〈+| + ab∗ |+〉 〈−|,
the ratio of the products between the diagonal and off-diagonal elements equals unity, i.e.,
(a∗b) (ab∗) / (a∗a) (b∗b) = 1. For an open system described by a mixed density matrix,
however, this ratio decreases from unity. Bearing this in mind, we rewrite the Wigner function
(50), to the discrete case where �

(
rj
) = ∑

k �kδ
(
rj − r(k)j

)
, in a form

W({ξ̃m}, t) =
2∑

r,s=1

Wr,s({ξ̃m}, t), (64)

with its diagonal (r = s) and off-diagonal (r �= s) elements given by

Wr,s({ξ̃m}, t) = (2/π)N

det J̃
�∗
r�s

〈{
βrm

} ∣∣{βsm}〉
×

∏
m

exp

{
− 2

Dm(t)
[
ξ̃m − K̃s

m(t)
] [
ξ̃m − K̃r

m(t)
]∗}

, (65)

where r and s (running from 1 to 2) label the product states composing the superposition (62).
Now, through the diagonal and off-diagonal elements of the Wigner function, we define

the ratio

 rs(t) = Wr,r({ξ̃m}, t)Ws,s({ξ̃m}, t)
Wr,s({ξ̃m}, t)Ws,r ({ξ̃m}, t)

= exp

⎡
⎣∑

m

⎛
⎝∣∣βsm − βrm

∣∣2 − 2

Dm(t)

∣∣∣∣∣∑
m′,n

Umm′(t)�m′n(t)
(
βrn − βsn

)∣∣∣∣∣
2
⎞
⎠
⎤
⎦ . (66)

which turns out to be independent of the variables {ξ̃m} of the Wigner function, as
desired. Moreover, for t = 0, such that �mn(0) = δmn and Dm(0) = 1, we obtain
 rs(0) = exp

(−∑
m

∣∣βsm−βrm
∣∣2). In analogy with the above observation concerning the ratio
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of the products between the diagonal and off-diagonal elements of a pure or mixed density
matrix, the above defined ratio  rs(t) offers a measure of the decoherence rate which follows
from the function

℘rs(t) ≡  rs(0)

 rs(t)

= exp

⎡
⎣−2

∑
m

⎛
⎝∣∣βsm − βrm

∣∣2 − 1

Dm(t)

∣∣∣∣∣∑
m′,n

Umm′(t)�m′n(t)
(
βrn − βsn

)∣∣∣∣∣
2
⎞
⎠
⎤
⎦ , (67)

which equals unity for t = 0. The above deduction of the decay function (67) can also be
developed for the general case of an initial continuous superposition state, instead of a discrete
one.

6.1. The equivalence between the decays of the interference terms of both the Wigner
function and the density operator: reservoirs at absolute zero

This subsection is devoted to demonstrating that the measure of the decoherence rate offered
by equation (67) is equivalent to the one coming from the interference terms of the density
operator, which is commonly used for the case of 0 K reservoirs. In fact, for reservoirs at 0 K,
where Dm(t) = 1, it is simple to verify that equation (67) reduces to

℘rs(t) = exp

⎡
⎣−2

∑
m

⎛
⎝∣∣βsm − βrm

∣∣2 −
∣∣∣∣∣∑
n

�mn(t)
(
βsn − βrn

)∣∣∣∣∣
2
⎞
⎠
⎤
⎦

=
∣∣∣∣∣

〈{
βrm

} ∣∣{βsm} 〉〈{
Kr
m(t)

} ∣∣{Ks
m(t)

} 〉
∣∣∣∣∣
4

, (68)

where the coefficients
〈{
βrm

} ∣∣{βsm} 〉 /〈{ Kr
m(t)

} ∣∣{Ks
m(t)

} 〉
are those coming from the

interference terms of density operator (44), when considering a discrete case.
Therefore, considering that decoherence times are usually estimated through the relation〈{
βrm

} ∣∣{βsm} 〉 / 〈{Kr
m (τD)

} ∣∣{Ks
m (τD)

} 〉 = e−1, for the case of reservoirs at 0 K, we obtain
from equation (68) the equivalent relation ℘rs (τD) = e−4, which gives the estimative of the
decoherence time through the Wigner function.

6.2. Decay time of the interference terms

Now we are able to define the time τint for a significant decay of the peaks associated with the
interference terms of the Wigner function (rj �= sj ). This is done, by generalizing the relation
℘rs (τD) = e−4, for the case of reservoirs at finite temperatures, to the equality

℘rs (τint) = exp

[
−4N/

∑
m

Dm (τint)

]
, (69)

that corresponds to measuring the decay of the interference terms of the Wigner function by
deducting their spreadings, common to all the diagonal and off-diagonal elements, as we can
see in equation (65). In other words, it is similar to analyzing the decay of the interference
terms in a frame where the diagonal terms are frozen.

6.3. Decoherence time

Finally, to define a decoherence time τD , which takes into account both the dispersion and
decay of the interference terms, we must consider both the above defined times: the mean
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dispersion time τdiff and the decay time of the interference terms of the Wigner functions τint.
We thus define the relation

1

τD
= 1

τdiff
+

1

τint
, (70)

where τ−1
diff only becomes relevant for particular initial states whose interference terms of the

Wigner function are null, as occur, for example in the case N = 1, to the coherent state
|α〉, or when the excitation of the components of a superposition state is significantly smaller
than unity. This will become clear in the example to be analyzed below for the degenerate
symmetric network. In the first case, it is well known that a coherent state remains as such, even
under a dissipative process, when considering a reservoir at 0 K. However, when considering
a reservoir at finite temperature, the decoherence time of a coherent state |α〉 can be estimated
through our defined equations (58) and (59).

6.3.1. The weak coupling regime. The Wigner function associated with the pure state (62)
in the weak coupling regime is obtained from equation (65) with U = 1 and Dm(t) = D(t) =
1 + 2n̄

(
1 − e−γ t). Our defined decay function (67) thus becomes

℘rs(t) ≡ exp[−8D−1(t)|α|2(R + S)(1 + 2n̄)(1 − e−γ t )]. (71)

We estimate the decoherence time τD of the family of states (62) through the equality
℘rs (τint) = exp

[−4D−1 (τint)
]
. The obtained result for the decay time and so for the

decoherence time reads

τD ≈ τint = 1

2|α|2γ
1

(R + S) (1 + 2n̄)
, (72)

which recovers the results in [10] for 0 K reservoirs (n̄ = 0). In equation (72) we have
disregarded the mean dispersion time τ−1

diff = 2n̄γ since we assumed that the excitation
(R + S) |α|2 is significantly larger than unity. Note that in the case where R = N (S = 0)
or S = N (R = 0), given the initial entangled state |ψ̂1,...,N (0)〉 = N±(|α, . . . , α, 〉 ± | −
α, . . . ,−α〉), the decoherence time decreases as the number of network oscillators increases.

For the case of the ‘Schrödinger cat’-like state in equation (63), we obtain the result

τD ≈ τint = 1

2|α|2γ
1

(1 + 2n̄)
. (73)

Summarizing, when the weak coupling regime is considered, the decoherence time decreases
with increasing temperature.

6.3.2. The strong coupling regime. From the Wigner function associated with the state∣∣ψ̂1,...,N (0)
〉
, derived from equation (65) and using the coefficients (53), we obtain in the strong

coupling regime

℘rs(t) = exp
[−8D−1

N (t)|α|2N2(1 + 2n̄)(1 − e−γNt )
/
N
]

. (74)

The estimated decay time τint of the interference terms of the Wigner functions is established
through the inequality ℘rs (τint) = exp {−4N/ [N − 1 + DN (τint)]} � exp

{−4D−1
N (τint)

}
,

such that

τint � 1

2|α|2γ
1

N2(1 + 2n̄)
, (75)

showing that the interference terms of the Wigner distribution decay at a faster rate than in the
weak coupling regime. For the ‘Schrödinger cat’-like state, equation (63), we obtain exactly
the result shown in equation (73).
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We finally note that, considering only the usual decay of the interference terms, given
by ℘rs (τD) = exp (−4), the estimation of the decoherence time leads to inconsistent results
which present negative values apart from singularities. For example, for the ‘Schrödinger
cat’-like state in equation (63), in the particular case N = 1, we obtain

τD ≈ 1

2γ [|α|2(1 + 2n̄)− n̄]
, (76)

which has singularities at n̄ = |α|2/(1 − 2|α|2) and becomes negative for |α|2(1 + 2n̄) <
n̄. Therefore, the procedure adopted in equation (70) to estimate the decoherence time by
separating both effects of dispersion and decay of the Wigner function interference terms is in
fact better than the cruder approach where only the interference effects present in the decay
function (67) are considered. Another example refers to the decoherence of a coherent state
|α〉, where the result τD ≈ 1/2γ n̄ computed through our technique accounts exactly for the
dispersion effect, apart from the decay rate γ , as expected. The usual procedure fails to give
such an account.

As mentioned above, the analysis of the emergence of DFSs with the reservoirs at finite
temperature is addressed in another work [19], where both, the collective effects of damping
and dispersion, are managed together with the network topology to build up desired DFSs.

7. Computing the entropy and the entanglement degree through the Wigner function

The computation of the density operator of the network for the case of reservoirs at finite
temperatures becomes a difficult task for the majority of the initial network states. Therefore,
similar to our procedure for the analysis of decoherence, we next compute the entropy of the
network using the Wigner functions as given by

S = 1 − Trρ2
S = 1 − πN

∫ ∞

−∞
d2 {ξm}W 2({ξm}, t)

= 1 − πN
∫ ∞

−∞
d2{ξ̃m}W 2({ξ̃m}, t), (77)

where the factor πN was introduced to produce a null lower bound for the entropy. Using the
integral result

1

π

∫
d2ηm exp

(
amη

∗
m − bmηm − cmη∗

mηm
) = 1

cm
exp

(
−ambm
cm

)
, (78)

and the Wigner function given by equation (43), or equation (51), we obtain the general
expression

S(t) = 1 −
∫

dr
∫

dr ′
∫

ds
∫

ds ′�∗(r)�∗(r ′)�(s)�(s ′)〈{βm(r)}|{βm(s)}〉
×〈{βm(r ′)}|{βm(s ′)}〉Prs,r ′s ′(t), (79)

which is applicable to any initial network state, where

Prs,r ′s ′(t) = 1

det J
exp

{
−
∑
m

[υm(s, s
′)υ∗

m(r, r
′)− 1

Dm(t)

×
(∑
�,n

U�m(t)��n(t)υn(s, s
′)

)(∑
�,n

U�m(t)��n(t)υn(r, r
′)

)∗]}
, (80)

and υm (r, s) = βm (r) − βm (s) . For the case where dissipation is absent, i.e., γm(ω) =
γ̃m(ω) = 0, we verify that Prs,r ′s ′(t) = 1 and, consequently, S = 0. Conversely, when
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γm(ω) �= 0 and γ̃m(ω) �= 0, the purity loss follows from the decay of Prs,r ′s ′(t) which reduces
to the function ℘rs(t),equation (67), that enters in the calculation of the decoherence time,
under the conditions det J = 1 (T = 0 K), r = r ′ and s = s ′. As expected, the purity loss
mechanism is intimately related to the decoherence one.

Focusing on the case when γm(ω) = γ̃m(ω) = 0, the entanglement degree of a bipartite
system described by a pure density operator ρAB—A and B standing for two complementary
sets of network oscillators— can be computed through the reduced entropy (concurrence)

C = 1 − TrA [TrBρAB]2 = 1 − TrB [TrAρAB]2 , (81)

which is given, through the joint Wigner functionW ({ξA} , {ξB} , t), as

C = 1 − πNA
∫ ∞

−∞
d2 {ξA}

[∫ ∞

−∞
d2ξBW ({ξA} , {ξB} , t)

]2

= 1 − πNB
∫ ∞

−∞
d2 {ξB}

[∫ ∞

−∞
d2ξAW ({ξA} , {ξB} , t)

]2

, (82)

where NA and NB refer to the numbers of oscillators composing the sets A and B, respectively.
When the subsystems A and B are uncorrelated, such that ρAB = ρA ⊗ ρB , the Wigner

function is factorized as

W ({ξA} , {ξB} , t) = W ({ξA} , t)W ({ξB} , t) , (83)

and, consequently

C = 1 − πNB
∫ ∞

−∞
d2 {ξB}W 2 ({ξB} , t) = 0, (84)

as expected.

8. Concluding remarks

In the present work we have analyzed the effects of temperature in a network of dissipative
quantum harmonic oscillators. Starting from a previous work where a general treatment
of such a bosonic dissipative network was presented [11], in the case of reservoirs at 0 K,
here we considered reservoirs at finite temperatures. Through the solution obtained for the
normal-ordered characteristic function, we did compute formal expressions for the Glauber–
Sudarshan P-function, the Wigner distribution function and the density operator for whatever
the initial network state. An important point to be stressed is the relevance played by the
Wigner function in the present context where the reservoirs are at finite temperature. In fact,
it becomes hard to identify the main features associated with the dynamic of the network
states through the density operator which appears to be an intricate expression. Through
the Wigner function, however, the dispersion coefficients of the normal-mode oscillators are
clearly identified as well as the decay of its interference terms. We also showed how to
compute the entropy and the entanglement degree through the Wigner function. We thus
emphasize that, despite the solutions we have derived for the master equations, we have used
the Wigner distribution function to estimate the decoherence time of a family of superposition
states of the network. Being easier to handle mathematically, the Wigner function circumvents
the difficulties inherent to the involved solutions we have derived for the master equations.

We demonstrated that the dispersion coefficients Dm(t) associated with the normal-mode
oscillators present completely different behaviors in both weak and strong coupling regimes. In
the former case, where the indirect-decay channels do not take place, the dispersion coefficients
are entirely related to the dissipative processes of the oscillators to their own reservoirs. In

20



J. Phys. A: Math. Theor. 42 (2009) 365304 M A de Ponte et al

this case the collective damping and dispersion effects are dismissible. However, in the later
case, the dispersion coefficients Dm(t) are counterbalanced by the dispersion rates J̃ mm(t)
and J̃ mn(t) coming from the direct- and indirect-decay channels, respectively. In this case,
the collective damping and dispersion effects emerge from the fact that all network oscillators
interact with all the reservoirs due to the strong coupling between each other. In fact, in the
strong coupling regime, the individual oscillators cannot account for the dynamic of the whole
network, which must be described through the collective normal-mode oscillators. Differently,
in the weak coupling regime, the network dynamic follows directly from those of the individual
oscillators.

In summary, we have presented an analysis of the mechanisms for handling the dispersion
coefficients Dm(t) in the strong coupling regime, by manipulating the dispersion rates J̃ mm(t)
and J̃ mn(t) through the nature and the temperature of the reservoirs, apart from the network
topology. Such an approach was explored in [19] to demonstrate the possibility of the
emergence of DFSs in a network of dissipative oscillators even with the reservoirs at finite
temperatures.

We have also presented a technique to estimate the decoherence time of network states
which separates the effects of dispersion from the decay of the interference terms in the Wigner
distribution function. Our technique overcomes the difficulties that show up with negative
values and singularities arising from the usual definition of the decoherence time based only on
the decay of interference terms. We have computed the decoherence time for some particular
states of the network, leaving for future work [19] the analysis of the emergence of DFSs
under temperature effects.
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Appendix A. Matrix equation

The solution of an arbitrary matrix equation of the form M • X+X • N� = P (for an unknown
X) can be obtained through the solution of the system

[(I ⊗ M) + (N ⊗ I)] • vec(X) ≡ vec(P), (A.1)

following from the inverse of [(I ⊗ M) + (N ⊗ I)], given by

vec(X) = [(I ⊗ M) + (N ⊗ I)]−1 • vec(P), (A.2)

where the notation vec (P) was defined in equation (32). Before computing the elements of
the inverse matrix (I ⊗ M) + (N ⊗ I) ≡ Q, it is useful to observe some important properties
of Q:

(i) The eigenvalues of matrix Q, defined by εij , are obtained through the direct sum of
the eigenvalues εi and ε̃i of matrices M and N, such that

εij = ε̃i + εj . (A.3)

(ii) The eigenvectors of matrix Q are obtained through the tensor product

ϑij = ν̃(i) ⊗ ν(j), (A.4)

where ν(i) and ν̃(i) describe the eigenvector associated with the eigenvalues εi and ε̃i . In fact,
knowing the eigenvalues and eigenvectors of matrices M and N, we can easily verify that ϑij
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defines the desired eigenvector, associated with the eigenvalue εij , since

[(I ⊗ M) + (N ⊗ I)] • (ν̃(i) ⊗ ν(j)) = ν̃(i) ⊗ (M • ν(j)) + (N • ν̃(i))⊗ ν(j)
= (ε̃i + εj )(ν̃

(i) ⊗ ν(j))
= εij (ν̃

(i) ⊗ ν(j)). (A.5)

Appendix B. Alternative expression for the evolution of a mixed superposition of Fock

states

We verify that the evolution of the initial state (45) can be characterized, using the same
definitions (40a) and (40b), through the characteristic function

χ({ηm}, t) =
∑
j

∑
{xm}

∑
{ym}
pj

(
C
(j)

{ym}
)∗
C
(j)

{xm} exp

(
−1

2

∑
m,n

ηmJmn(t)η
∗
n

)

×
∏
�

[
x�∑
j�=0

√
y�!x�!

j�! (x� − j�)! (y� − x� + j�)!

×
(∑

m

ηm�
∗
m�(t)

)y�−x�+j� (
−
∑
m

η∗
m�m�(t)

)j� ]
, (B.1)

which leads to the Wigner distribution function given in terms of derivatives as

W({ξm}, t) = (2/π)N

det J̃

∑
j

∑
{xm}

∑
{ym}
pj

(
C
(j)

{ym}
)∗
C
(j)

{xm}

×
⎛
⎝∏

�

x�∑
j�=0

√
y�!x�!

j�! (x� − j�)! (y� − x� + j�)!
lim
ε�→0

∂y�−x�+2j�

∂ (ε�)
j� ∂

(
ε∗�
)y�−x�+j�

⎞
⎠

× exp

[
−2

∑
m,n

J̃−1
mn(t)

(
ξm −

∑
�

ε��m�(t)

)(
ξ ∗
n −

∑
�

ε∗��
∗
n�(t)

)]
. (B.2)

The above distribution can also be given explicitly in the form

W({ξm}, t) = (2/π)N

det J̃

∑
j

∑
{xm}

∑
{ym}
pj

(
C
(j)

{ym}
)∗
C
(j)

{xm}

⎛
⎝∏

�

x�∑
q�=0

√
y�!x�!

(x� − q�)!

⎞
⎠

×
[∏
�,�′

R�,�′−1∑
R��′=0

&�′�({Rn,n′ }; t)�
(
y�′ − x�′ + q�′

−
�−1∑
i=1

(
Ri,�′−1 − Ri,�′

) − (
R�,�′−1 − R�,�′

) )]

×
(∏

�

��(
{
Rn,n′

}
,
{
ξp
} ; t)

[
2
∑
m,n J̃

−1
mn(t)�m�(t)ξ

∗
n

]R�N
R�N !

)

× exp

(
−2

∑
m,n

ξmJ̃
−1
mnξ

∗
n

)
, (B.3)
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where we have defined

R�,0 = q�, (B.4a)

&mn({R�,�′ }; t) = 1(
Rn,m−1 − Rn,m

)
!

[
−2

∑
�,�′
J̃−1
��′ (t)��n(t)�

∗
�′m(t)

]Rn,m−1−Rn,m
, (B.4b)

�m({R�,�′ }, {ξp}; t) =
[
2
∑
�,�′ J̃

−1
��′ (t)ξ��

∗
�′m(t)

]ym−xm+qm−∑
�(R�,m−1−R�,m)[

ym − xm + qm − ∑
�

(
R�,m−1 − R�,m

)]
!

, (B.4c)

with

� (x) =
{

1 for x � 0
0 for x < 0

. (B.5)

As noted in section 4, we remember that the Glauber–Sudarshan P-function P({ξm}, t)
can be derived from the Wigner distribution by replacing J̃ mn by Jmn. Using such a P-function
we obtain a compact expression of the evolved density operator associated with the initial state
(45), given by

ρS(t) =
∑
j

∑
{xm}

∑
{ym}
pj

(
C
(j)

{ym}
)∗
C
(j)

{xm}

×
⎧⎨
⎩∏

n

xn∑
qn=0

∑
in,jn,kn

(−1)kn

kn!
√
in!jn!

√
xn!yn!

qn! (xn − qn)! (yn − xn + qn)!

× lim
εn→0

∂in+jn+2kn

∂ (εn)
jn+kn ∂

(
ε∗n
)in+kn

[(∑
m

εm�
∗
mn(t)

)yn−xn+qn

×
(∑

m

ε∗m�mn(t)

)qn]
|in〉 〈jn|

}
exp

(
1

2

∑
m,n

εmJmn(t)ε
∗
n

)
. (B.6)

By defining the parameters

R�0 = j� + k�, (B.7a)

S�0 = i� + k�, (B.7b)

S�N = 0, (B.7c)

δ(x) =
{

1 if x = 0
0 if x �= 0

, (B.7d)

we, alternatively, obtain the explicit form of the density operator

ρS(t) =
∑
j

∑
{xm}

∑
{ym}
pj

(
C
(j)

{ym}
)∗
C
(j)

{xm}

⎧⎨
⎩∏

�

x�∑
q�=0

∞∑
i�,j�,k�=0

√
y�!x�!

(x� − q�)!
(−1)k� (i� + k�)! (j� + k�)!

k�!
√
i�!j�!

×
⎡
⎣∏

�′

S�,�′−1∑
S�,�′=0

S�,�′−1−S��′∑
K�,�′=0

R�,�′−1∑
R�,�′ =0

(
1

2
J�′�(t)

)S�,�′−1−S�,�′ −K�,�′

× [���′(t)]
K�,�′

[
�∗
��′(t)

]R�,�′−1−R�,�′(
R�,�′−1 − R�,�′

)
!
(
S�,�′−1 − S�,�′ −K�,�′

)
!K�,�′!

]
δ

(
q� −

∑
�′
K�′,�

)
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× δ

[
R�,N −

∑
�′

(
S�′,�−1 − S�′,� −K�′,�

)]
δ

×
[
y� − x� + q� −

∑
�′

(
R�′,�−1 − R�′,�

)] |i�〉 〈j�|
}

. (B.8)

For the case where all the reservoirs are at 0 K, so that Jmn = 0, only the terms with
K�,�′ = S�,�′−1 − S�,�′ survive in the summation over K�,�′ of expression (B.8). Therefore, at
0 K, the density operator (B.8) reduces to the expression

ρS(t) =
∑
j

∑
{xm}

∑
{ym}
pj

(
C
(j)

{ym}
)∗
C
(j)

{xm}

⎛
⎝∏

�

x�∑
q�=0

√
y�!x�!

(x� − q�)!
∞∑
k�=0

(−1)k�

k�!

⎞
⎠

× |F({q�} , {k�} , t)〉 〈F({y� − x� + q�} , {k�} , t)| (B.9)

as already presented in [11], where we have defined, with S�N = 0, the superposition of
product states

|F({q�} , {k�} , t)〉 =
⊗
�

∞∑
j�=0

(j� + k�)!√
j�!

⎛
⎝∏

�′

S�,�′−1∑
S�,�′ =0

[���′(t)]
S�,�′−1−S�,�′(

S�,�′−1 − S�,�′
)
!

⎞
⎠

×δ
(
q� −

∑
�′

(
S�′,�−1 − S�′,�

)) |j�〉 . (B.10)

References

[1] Feder D L 2006 Phys. Rev. Lett. 97 180502
[2] Christandl M, Datta N, Ekert A and Landahl A J 2004 Phys. Rev. Lett. 92 187902

Kay A 2006 Phys. Rev. A 73 032306
Kay A 2007 Phys. Rev. Lett. 98 010501

[3] Plenio M B, Hartley J and Eisert J 2004 New J. Phys. 6 36
[4] Kostak V, Nikolopoulos G M and Jex I 2007 Phys. Rev. A 75 042319
[5] Burgarth D and Bose S 2005 New J. Phys. 7 135
[6] Burkard G and Brito F 2005 Phys. Rev. B 72 054528
[7] Ficek Z and Tanas R 2002 Phys. Rep. 372 369
[8] de Ponte M A, de Oliveira M C and Moussa M H Y 2005 Ann. Phys.,NY 317 72
[9] de Ponte M A, de Oliveira M C and Moussa M H Y 2004 Phys. Rev. A 70 022324

de Ponte M A, de Oliveira M C and Moussa M H Y 2004 Phys. Rev. A 70 022325
[10] de Ponte M A, Mizrahi S S and Moussa M H Y 2007 Ann. Phys., NY 322 2077
[11] de Ponte M A, Mizrahi S S and Moussa M H Y 2007 Phys. Rev. A 76 032101
[12] Chou C H, Yu T and Hu B L 2008 Phys. Rev. E 77 011112
[13] Zanardi P and Rasetti M 1997 Phys. Rev. Lett. 79 3306

Lidar D A, Chuang I L and Whaley K B 1998 Phys. Rev. Lett. 81 2594
Knill E, Laflamme R and Viola L 2000 Phys. Rev. Lett. 84 2525
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Földi P, Benedict M G, Czirják A and Molnár B 2003 Phys. Rev. A 67 032104

[15] Gardiner C W 1983 Stochastic Methods (Berlin: Springer)
[16] Glauber R J 1986 Frontiers in Quantum Optics ed E R Pike and S Sarkar (Bristol: Adam Hilger) p 534

24

http://dx.doi.org/10.1103/PhysRevLett.97.180502
http://dx.doi.org/10.1103/PhysRevLett.92.187902
http://dx.doi.org/10.1103/PhysRevA.73.032306
http://dx.doi.org/10.1103/PhysRevLett.98.010501
http://dx.doi.org/10.1088/1367-2630/6/1/036
http://dx.doi.org/10.1103/PhysRevA.75.042319
http://dx.doi.org/10.1088/1367-2630/7/1/135
http://dx.doi.org/10.1103/PhysRevB.72.054528
http://dx.doi.org/10.1016/S0370-1573(02)00368-X
http://dx.doi.org/10.1016/j.aop.2004.12.007
http://dx.doi.org/10.1103/PhysRevA.70.022324
http://dx.doi.org/10.1103/PhysRevA.70.022325
http://dx.doi.org/10.1016/j.aop.2007.03.001
http://dx.doi.org/10.1103/PhysRevA.76.032101
http://dx.doi.org/10.1103/PhysRevE.77.011112
http://dx.doi.org/10.1103/PhysRevLett.79.3306
http://dx.doi.org/10.1103/PhysRevLett.81.2594
http://dx.doi.org/10.1103/PhysRevLett.84.2525
http://dx.doi.org/10.1103/PhysRevA.70.053825
http://www.arxiv.org/abs/quant-ph/030103
http://dx.doi.org/10.1103/PhysRevD.24.1516
http://dx.doi.org/10.1103/PhysRevD.26.1862
http://dx.doi.org/10.1063/1.881293
http://dx.doi.org/10.1103/PhysRevA.31.1059
http://dx.doi.org/10.1007/BF01725541
http://dx.doi.org/10.1103/PhysRevD.42.2929
http://dx.doi.org/10.1103/PhysRevA.67.032104


J. Phys. A: Math. Theor. 42 (2009) 365304 M A de Ponte et al

[17] Isar A and Scheid W 2007 Physica A 373 298
[18] Ciaramicoli G, Marzoli I and Tombesi P 2003 Phys. Rev. Lett. 91 017901

Ciaramicoli G, Marzoli I and Tombesi P 2004 Phys. Rev. A 70 032301
Zurita-Sánchez J R and Henkel C 2008 New J. Phys. 10 083021

[19] de Ponte M A, Mizrahi S S and Moussa M H Y to be published elsewhere
[20] Sandulescu A and Scutaru H 1987 Ann. Phys., NY 173 277

Gallis M R 1996 Phys. Rev. A 53 655
Isar A and Scheid W 2002 Phys. Rev. A 66 042117

[21] Kanokov Z, Palchikov Yu V, Adamian G G, Antonenko N V and Scheid W 2005 Phys. Rev. E 71 016121
[22] Horn R A and Johnson C R 1991 Topics in Matrix Analysis (New York: Cambridge University Press)

25

http://dx.doi.org/10.1016/j.physa.2006.04.065
http://dx.doi.org/10.1103/PhysRevLett.91.017901
http://dx.doi.org/10.1103/PhysRevA.70.032301
http://dx.doi.org/10.1088/1367-2630/10/8/083021
http://dx.doi.org/10.1016/0003-4916(87)90162-X
http://dx.doi.org/10.1103/PhysRevA.53.655
http://dx.doi.org/10.1103/PhysRevA.66.042117
http://dx.doi.org/10.1103/PhysRevE.71.016121

	1. Introduction
	2. The master equation of a bosonic dissipative network
	2.1. Weak interoscillator coupling regime
	2.2. Strong interoscillator coupling regime
	2.3. A common reservoir

	3. Normal ordered characteristic function
	4. Dynamics of the network states: characteristic function, Glauber--Sudarshan  P  -function, Wigner distribution and density operator
	4.1. A mixed superposition of coherent states
	4.2. A mixed superposition of Fock states

	5. Time-evolved dispersion coefficients
	5.1. Directional and mean dispersion times
	5.2. Dispersion and topology

	6. Collective decoherence rates
	6.1. The equivalence between the decays of the interference terms of both the Wigner function and the density operator: reservoirs at absolute zero
	6.2. Decay time of the interference terms
	6.3. Decoherence time

	7. Computing the entropy and the entanglement degree through the Wigner function
	8. Concluding remarks
	Acknowledgments
	Appendix A. Matrix equation
	Appendix B. Alternative expression for the evolution of a mixed superposition of Fock states
	References

